

(

Total Bilirubin DMSO Colorimetric

INTENDED USE

For the quantitative determination of total bilirubin concentration in human serum or plasma.

CLINICAL SIGNIFICANCE

Bilirubin is a breakdown product of hemoglobin, insoluble in water. It is transported from the spleen to the liver and excreted into bile. Hyperbilirubinemia results from the increase of bilirubin concentrations in plasma.

Causes of hyperbilirubinemia:

- **-Total bilirubin:** Increase hemolysis, genetic errors, neonatal jaundice, ineffective erythrpoiesis, and drugs.
- **-Direct bilirubin:** Hepatic cholestasis, genetic errors, hepatocellular damage.

Clinical diagnosis should not be made on a single test result; it should integrate clinical and other laboratory data.

PRINCIPLE OF THE METHOD

Bilirubin is converted to colored azobilirubin by diazotized sulfanilic acid and measured photometrically. Of the two fractions presents in serum, bilirubin-glucuromide and free bilirubin loosely bound to albumin, only the former reacts directly in aqueous solution (bilirubin direct), while free bilirubin requires solubilization with dimethylsulphoxide (DMSO) to react (bilirubin indirect). In the determination of indirect bilirubin the direct is also determined, the results correspond to total bilirubin.

The intensity of the color formed is proportional to the bilirrubin concentration in the sample.

REAGENTS

	Sulfanilic acid	30 mmol/L
R 1	Hydrochloric acid (HCl) Dimethylsulphoxide (DMSO)	50 mmol/L 7 mol/L
R 2	Sodium nitrite	29 mmol/L
Optional	BILIRUBIN CAL	

ADDITIONAL EQUIPMENT

- Spectrophotometer or colorimeter measuring at 555 nm.
- Matched cuvettes 1.0 cm light path.
- General laboratory equipment

PRECAUTIONS

- Dimethylsulphoxide (DMSO): Irritant to eyes and skin. In case of contact with eyes, rinse immediately with plenty of water and seek medical advice.
- Hydrochloric acid (HCL): Irritant to eyes, respiratory system and skin. In case of contact with eyes, rinse immediately with plenty of water and seek medical advice.

PREPARATION

All the reagents are ready to use.

STORAGE AND STABILITY

- All the components of the kit are stable until the expiration date on the label when stored tightly closed at 2-8°C, protected from light and contaminations prevented during their use.
- Do not use reagents over the expiration date.
- Signs of reagent deterioration:
 - Presence of particles and turbidity.
 - Color development in R 2.

SAMPLES

Serum or plasma: free of hemolysis. Protect samples from direct light. Stability: Bilirubin is stable at 2-8°C for 4 days and 2 months at -20°C.

PROCEDURE

1.	Assay conditions:	
	Wavelength:	555 nm (530-580)

- 2. Adjust the instrument to zero with distilled water.
- 3. Pipette into a cuvette:

	Blank	B. Total
R 1 (mL)	1.5	1.5
R 2 (μL)		50
Sample /Calibrator (μL)	100	100

- 4. Mix and incubate for exactly **5 minutes** at room temperature.
- 5. Read the absorbance (A).

CALCULATIONS

With Calibrator:

(A)Sample-(A) Sample Blank x Conc. Calibrator = mg/dL (A) Calibrator-(A)Calibrator Blank bilirubin

With Factor:

(A)Sample-(A) Sample Blank x 19.1 = mg/dL bilirubin in the sample

Conversion factor: $mg/dL \times 17.1 = \mu mol/L$.

QUALITY CONTROL

- Control sera are recommended to monitor the performance of assay procedure.
- Control values are found outside the defined range, check the instrument, reagents and calibrator for problems.
- Each laboratory should establish its own Quality Control scheme and corrective actions if controls do not meet the acceptable tolerances.

REFERENCE VALUES

Bilirubin Total Up to 1.10 mg/dL = Up to 18.81 μ mol/L These values are for orientation purpose; each laboratory should establish its own reference range.

PERFORMANCE CHARACTERISTICS 1.Measuring range:

From *detection limit* of 0.00526 mg/L to *linearity limit* of 18 mg/dL.

If the results obtained were greater than linearity limit, dilute the sample 1/2 with NaCl 9 g/L and multiply the result by 2.

2.Precision:

	Intra-assay (n=20)		Inter-assay (n=20)	
Mean (mg/dL)	1.53	5.06	1.53	5.02
SD	0.03	0.05	0.03	0.11
CV %	1.73	1.01	1.92	2.18

3.Sensitivity:

1 mg/dL = 0.05074 A.

4.Accuracy:

Results obtained using reagents (y) did not show systematic differences when compared with other commercial reagents (x). The results obtained using 50 samples were the following:

Correlation coefficient (r)²: 0.991.

Regression equation: y= 0.82743x-0.0382.

The results of the performance characteristics depend on the analyzer used.

INTERFERENCES

Hemolysis causes decreased bilirubin values.

A list of drugs and other interfering substances with bilirubin has been reported.

Note

• For bilirubin determination in newborns, pipette 50 μL of sample. Multiply the result by 2.

REFERENCES

- 1. Kaplan A et al. Bilirubin. Clin Chem The C.V. Mosby Co. St Louis. Toronto. Princeton 1984; 1238-1241. 436 and 650.
- 2. Malloy H T. et al. The determination of bilirubin with the photoelectric colorimeter. J. Biol Chem 1937; 112, 2; 481-491.
- 3. Martinek R. Improved micro-method for determination of serum bilirubin. Clin Chim 1966: Acta 13: 61-170.

- Young DS. Effects of drugs on Clinical Lab. Tests, 4th ed AACC Press, 1995.
- 5. Young DS. Effects of disease on Clinical Lab. Tests, 4th ed AACC 2001.
- 6. Burtis A et al. Tietz Textbook of Clinical Chemistry, 3rd ed AACC 1999.
- 7. Tietz N W et al. Clinical Guide to Laboratory Tests, 3rd ed AACC 1995.

ATLAS MEDICAL

Ludwig-Erhard Ring 3 15827 Blankenfelde-Mahlow Germany

Tel: +49 - 33708 - 3550 30 Email: Info@atlas-medical.com

PPI1443A01 Rev A (02.09.2019)

REF	Catalogue Number	4	Temperature limit
IVD	In Vitro diagnostic medical device	$\hat{\mathbb{A}}$	Caution
$\overline{\Sigma}$	Contains sufficient for <n> tests and Relative size</n>		Consult instructions for use (IFU)
LOT	Batch code		Manufacturer
Ţ	Fragile, handle with care		Use-by date
II	Manufacturer fax number		Do not use if package is damaged
	Manufacturer telephone number	\rightarrow	Date of Manufacture
漆	Keep away from sunlight	4	Keep dry