INTENDED USE
For the quantitative determination of alkaline phosphatase in human serum and heparinized plasma.

PRINCIPLE OF THE METHOD
Alkaline phosphatase (ALP) catalyses the hydrolysis of p-nitrophenyl phosphate at pH 10.4, liberating p-nitrophenol and phosphate, according to the following reaction:

\[
p\text{-Nitrophenylphosphate} + H_2O \rightarrow p\text{-Nitrophenol} + \text{Phosphate}
\]

The rate of p-nitrophenol formation, measured photometrically, is proportional to the catalytic concentration of alkaline phosphatase present in the sample.

CLINICAL SIGNIFICANCE
Alkaline phosphatase is an enzyme present in almost all weaves of the organism, being particularly high in bone, liver, placenta, intestine and kidney. Both increases and decreases of plasma ALP are of importance clinically. Causes of increased plasma ALP: Paget’s disease of bone, obstructive liver disease, hepatitis, hepatotoxicity caused by drugs or osteomalacia.
Causes of decreased plasma ALP: Cretinism and vitamin C deficiency.

Clinical diagnosis should not be made on a single test result; it should integrate clinical and other laboratory data.

REAGENTS

| R 1 Buffer | Diethanolamine (DEA) pH 10.4 | 1 mmol/L |
| R 2 Substrate | p-Nitrophenylphosphate (pNPP) | 10 mmol/L |

ADDITIONAL EQUIPMENT
- Spectrophotometer or colorimeter measuring at 405 nm.
- Thermostatic bath at 25°C, 30°C, 37°C (± 0.1°C)
- Matched cuvettes 1.0 cm light path.
- General laboratory equipment.

PREPARATION
Working reagent (WR)
Mix: 4 vol. (R1) Buffer + 1 vol. (R2) Substrate
Stability: 1 month at 2-8°C or 10 days at room temperature (15-25°C).

STORAGE AND STABILITY
- All the components of the kit are stable until the expiration date on the label when stored tightly closed at 2-8°C, protected from light and contaminations prevented during their use.
- Do not use reagents over the expiration date.
- Signs of reagent deterioration
 - Presence of particles and turbidity.
 - Blank absorbance (A) at 405 nm ≥ 1.50.

SAMPLES
Serum or heparinized plasma. Use unhemolyzed serum, separated from the clot as soon as possible. Stability: 3 days at 2-8°C.

PROCEDURE
1. Assay conditions:

<table>
<thead>
<tr>
<th>Assay conditions</th>
<th>25°C</th>
<th>30°C</th>
<th>37°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay temperature</td>
<td>Conversion factor to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25°C</td>
<td>1.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30°C</td>
<td>1.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37°C</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assay temperature</th>
<th>Conversion factor to</th>
</tr>
</thead>
<tbody>
<tr>
<td>25°C</td>
<td>1.64</td>
</tr>
<tr>
<td>30°C</td>
<td>1.33</td>
</tr>
<tr>
<td>37°C</td>
<td>1.00</td>
</tr>
</tbody>
</table>

2. Adjust the instrument to zero with distilled water or air.
3. Pipette into a cuvette:

| WR (ml) | 1.2 |

4. Mix, incubate for 1 minute.
5. Read initial absorbance (A) of the sample, start the stopwatch and read absorbances at 1 min intervals thereafter for 3 min.
6. Calculate the difference between the consecutive absorbances and the average absorbance differences per minute (ΔA/min).

QUALITY CONTROL
If control values are found outside the defined range, check the instrument, reagents and technique for problems.
Each laboratory should establish its own Quality Control scheme and corrective actions if controls do not meet the acceptable tolerances.

REFERENCE VALUES

<table>
<thead>
<tr>
<th>Reference population</th>
<th>25°C</th>
<th>30°C</th>
<th>37°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children(1-14 years)</td>
<td><480 U/L</td>
<td><480 U/L</td>
<td><645 U/L</td>
</tr>
<tr>
<td>Adults</td>
<td>60-170 U/L</td>
<td>73-207 U/L</td>
<td>98-279 U/L</td>
</tr>
</tbody>
</table>

Factors affecting ALP activities in a normal population include exercise, periods of repaid growth...
in children and pregnancy. These values are for orientation purpose; each laboratory should establish its own reference range.

PERFORMANCE CHARACTERISTICS

Measuring range:
From detection limit of 0.6845 U/L to linearity limit of 1200 U/L.

If the results obtained were greater than linearity limit, dilute the sample 1/10 with NaCl 9 g/L and multiply the result by 10.

Precision:

<table>
<thead>
<tr>
<th>Intra-assay (n=20)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (U/L)</td>
<td>174</td>
</tr>
<tr>
<td>SD</td>
<td>0.72</td>
</tr>
<tr>
<td>CV (%)</td>
<td>0.41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inter-assay (n=20)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (U/L)</td>
<td>175</td>
</tr>
<tr>
<td>SD</td>
<td>6.88</td>
</tr>
<tr>
<td>CV (%)</td>
<td>3.93</td>
</tr>
</tbody>
</table>

Sensitivity: 1 U/L = 0.0003 ΔA/min.

Accuracy:

Results obtained using Atlas reagents (y) did not show systematic differences when compared with other commercial reagents (x).

The results obtained using 50 samples were the following:

Correlation coefficient (r)²: 0.99938.
Regression equation: y = 1.025x - 1.105.

The results of the performance characteristics depend on the analyzer used.

INTERFERENCES

Fluoride, oxalate, citrate and EDTA inhibit alkaline phosphatase activity and should therefore not be used as anticoagulants. Haemolyses interferes due to the high concentration of alkaline Phosphatase in red cells.

A list of drugs and other interfering substances with acid Phosphatase determination has been reported.

REFERENCES

Atlas Medical

Ludwig-Erhard Ring 3
15827 Blankenfelde-Mahlow
Germany

Tel: +49 - 33708 – 3550 30

Email: Info@atlas-medical.com

PPI1516A01

Rev B (03.12.2019)